
�����������	��
	�����
�
	��	����������	�����������
!

���	��	��������1, 2 and �����	���
����3, 2

1 Dept. of Informatics, Örebro University, SE-701 82 Örebro, Sweden
E-mail: pak@esa.oru.se

2 Centre for studies on humans, technology and organization (CMTO)
Linköping University, SE-581 83 Linköping, Sweden

3 Dept. of Informatics, Jönköping International Business School
P.O. 1026, SE-551 11 Jönköping, Sweden

E-mail: ggo@ida.liu.se

 ��	!��

" Language Action Perspective; Actability; Usability; Requirements Engineering;
Information Systems Development;

��
�����

This paper presents an approach to requirements elicitation and analysis based on an action
view of information systems. The approach aims at helping developers to elicit requirements
based on the business context in which the planed system is to be used and on the business
actions that is to be performed with and within it. It is shown how the approach supports
traceability of requirements, from business model to system design, in order to ease the bur-
den of system development, maintenance and evolution.

! Formal reference to this paper is: Ågerfalk P J, Goldkuhl G (1998). Elicitation and Analysis of Actability Re-

quirements. In ���������	
����
����UG���

�������������������������������

���	�������	� ���������, pp.
14-28. Fowler, D and Dawson, L (Eds.). School of Management Information Systems, Deakin University,
Geelong, Vic, Australia�

2

#�� $����
������

It is a well-known fact that elicitation and management of requirements is a difficult task in
all software and system engineering efforts. Poor understanding and handling of requirements
often lead to systems that do not meet user expectations and are hard to maintain and further
enhance. This paper presents an approach to requirements elicitation and representation
founded on an action view of information systems. Such a view emphasises what people do
while communicating by means of computerised information systems (Goldkuhl & Ågerfalk,
1998)

The presented techniques and modelling notations is part of the phase “interaction analysis”
within the requirements engineering method VIBA/SIMM that is developed at the Centre for
studies on humans, technology and organization (CMTO) at Linköping University, Sweden.
VIBA1 is an acronym for Versatile Information and Business requirements Analysis and
SIMM should be interpreted as Situation adaptable work and Information systems Modelling
Method.

Interaction analysis focuses on the interaction between an IS and its users. It is therefore
mainly functional requirements and requirements regarding interface layout to support user
actions, i.e. what we call the actability of the IS, that are addressed. Other requirements are
handled within other parts of VIBA and it is outside the scope of this paper to go into detail
of those parts.

%��	�����������
	�����������	�����

Requirements engineering (RE) is really a kind of “never-ending story”. The story begins
with some fuzzy ideas about how a computerised information system (IS) might support the
way business is done (or perhaps ought to be done). The process of eliciting and formalising
such ideas into a requirements document is generally referred to as requirements elicitation or
requirements definition and specification (Sommerville, 1996). We stress that the RE process
does not end with such a document. During the life of an IS, requirements are likely to
change many times in order to keep up with an ever changing business environment
(McConnel, 1996). Thus requirements change management becomes an important part of the
entire RE process (c.f. Lam, 1998; Lam et al, 1998). Even when an IS is to be phased out the
RE process continues. By preserving requirements documents (including the changes made to
them with the rationale behind those changes) developers can learn from previous experi-
ences when building new information systems, c.f. the use of patterns in software engineering
(Gamma et al, 1995; Maiden et al, 1998). Thus, in order to support the RE process as a
whole, a method for elicitation and analysis of requirements must support traceability of re-
quirements from the IS to the business of which the system is a crucial part. That is, the pro-
duced requirements specification must support traceability from detailed system design all
the way back to business model.

$����������	&�
���
	�
	������

Many approaches and theories within the field of information systems are based on a strict
representational view of information. One main purpose of requirements engineering is, with
that view, to get an accurate ”image” of reality in order to have the analysed piece of reality

1 VIBA is used as replacement for the now obsolete term BIA from previous work, e.g. Goldkuhl & Ågerfalk

(1998).

3

properly represented in the (database of the) IS. This strict representational view can be
challenged in several ways, which a language action perspective certainly does (Goldkuhl &
Lyytinen, 1982; Winograd & Flores, 1986). Information systems are here not considered as
”containers of facts” or ”instruments for information transmission”. Information systems are
instead seen as vehicles for organisational communicative action (Goldkuhl & Ågerfalk,
1998). In the language action perspective communication and language use are conceived as
action. ���
 ��!� �
�
����
 following speech act theory (Austin, 1962; Searle, 1969). In this
theory utterances and messages are described as consisting of two parts: A propositional
content (”what is talked about”) and an action mode (”what speaker does in relation to lis-
tener”). We do not only use utterances and messages to describe the world around us. There
are also performative utterances as e.g. requests, questions, proposals, orders, promises and
claims.

Information and processing in a computerised IS is reinterpreted following a language action
view. Information is not restricted to a propositional content as in a strict representational
view. In many information systems the action character of information (stored in a database
or represented on a user interface) is implicit or obscure. The processing of information
means in this view performing organisational action. One important feature of the proposed
RE approach is to design information systems with more visible and transparent action char-
acters. VIBA is based on such a language action perspective (Goldkuhl & Ågerfalk, 1998)
and we define information system as consisting of:

• an action potential (a repertoire of actions and vocabulary)

• a memory of earlier actions and action prerequisites

• actions performed interactively by the user and the system and/or automatically by the
system

One of the most important features of an information system is its ��
�"���
#, i.e. its capability
to perform actions and to permit and facilitate users to perform their actions both through the
system and based on documents (messages) from the system. Requirements engineering will
in this context be a key to successful design of actability.

'�� (����	�)��)��!	��	*$(�+&$,,

When using VIBA/SIMM the traditional borderline between business modelling and systems
development is more or less obsolete. The reason is that VIBA treats analysis and design of
business processes and information systems as an integrated whole. The rationale for such an
approach is that we believe that information systems are such a vital part of today’s business’
that it’s impossible to view system development as an isolated activity. When changing an IS
the business is changed as well. Thus by viewing system development as business develop-
ment the change of the business becomes conscious and well managed.

Development according to VIBA is divided into two main components; Business Process
Modelling (BPM) and Information System focused Modelling (ISM), see figure 1. During
BPM the business goals, problems, strengths and weaknesses, action structure and other de-
velopment constraints are analysed. These activities are often done as a direct continuation of
some feasibility study or change analysis, e.g. Change analysis (CA) according to SIMM
(Goldkuhl & Röstlinger, 1993), that is supposed to be done before system development starts.
The main outcome of BPM is a business action model documented in action diagrams2. Such
diagrams show the action logic of the business with results of and prerequisites for actions.

2 An example of action diagrams used in the modelling of a system to support a travel agency can be found in
appendix.

4

The action diagrams are explicit regarding what actions are to be performed by or in interac-
tion with planned information systems.

The action diagrams of BPM are used as a basis for ISM, which consists of three main areas;
Interaction analysis, Conceptual analysis and Document analysis. Interaction analysis (which
is described in more detail in the next section) is concerned with the user interaction, i.e. how
the communication by use of the IS is to be performed. During Conceptual analysis the focus
is on what to communicate, i.e. the concepts being used, their relationships and lifecycles.
Document analysis is about the documents being used as carriers of messages and their rela-
tionships (both conceptual and based on actions).

-���	#�	,���	���.�����
	��	*$(�+&$,,

As mentioned above this paper’s focus is on Interaction analysis and it is therefore out of the
scope to go into detail of the other parts of VIBA. See (Goldkuhl & Ågerfalk, 1998) for a
somewhat more exhaustive treatment.

/�� $����������	�����
�

Interaction analysis (IA) is concerned with the interaction between users and information
systems. Its main purpose is to bring an understanding of how the communication through the
IS is to be performed. IA thus means requirements elicitation and analysis of the roles of
screen documents, relations between different interactive situations, interactive actions (of
both user and IS) and maintenance of action memory (e.g. the database).

Interaction analysis follows an iterative process that uses a combination of analytical model-
ling and prototyping. Interactive situation proposals are derived from the interactive actions
of action diagrams of BPM. These are analysed and validated by use of models and proto-
types. Requirements elicitation, analysis and validation are then iterated until the system
meets the required actability (Goldkuhl & Ågerfalk, 1998).

This section presents the part of interaction analysis that is concerned with the analytical
modelling of actability requirements. We start by presenting a state model of user interaction,
which is used as theoretical foundation for the analysis of interactive situations presented
subsequently.

(�,

Problems

Patterns
Action

diagrams

Goals

$&,

Describe actions of
organisations, people and
IT-systems

Interaction
analysis

How to

communicate

Conceptual
analysis

What to

communicate

Document
analysis

Documents as

action objects and

communication

context

Other prerequisites

5

�	&����	,�
��	��	0
��	$����������

In order to (analytically) analyse user interaction there is a need for a concept of smallest pos-
sible interactive communicative user action, i.e. actions that cannot reasonably be divided
into sub-actions. Such actions are referred to as �
�������
���
� Thus an interactive situation
is constituted by a non-empty set of atomic actions with associated sequence restrictions.

When analysing user interaction we adhere to the notion of a discrete system as always being
in some well-defined state. When dealing with user interaction there is a need to distinguish
between two different systems (of which one is a part of the other). The IS, i.e. the computer
artefact, is by definition a system. Since the analysis also considers the interacting user there
is another system constituted by the communication context, i.e. the IS and the interacting
user. In this section the computerised artefact is thus referred to as IS and the communication
context is referred to as CC.

When a human actor (i.e. the user) performs an atomic action the state of CC is changed. As a
response to the actor’s action, the IS probably performs another action in turn, i.e. the func-
tionality requested by the user is executed. That IS action then again changes the state of CC.
This would yield a model of user interaction with three states and two actions in the pre-
scribed order. However, in the context of social interaction (of which IS usage is an example)
an action always reflects on the actor (e.g. Giddens, 1984). In order to perceive that reflection
the actor always performs an interpretation act in response to his/her previous intentional
action.

-���	'�	%��	
����	��
��	��	�����������	�
	�	������	���������

By applying this theoretical reasoning to user interaction we need to extend the model to con-
sist of three states and three actions. The first state of CC, s0, is the initial state that consti-
tutes prerequisites for the user action a1, i.e. s0 is a precondition for a1. The second state s1 is
then reached by performing a1. As a response to a1 the IS automatically performs a2 which
puts CC in state s2. Note that a2 might be constituted by a series of IS actions. Finally the user
performs the interpretation action a3 to perceive what the IS accomplished.

Figure 2 shows the proposed state model of interaction as a finite automaton. In the model
state s0 is both initial state and the only accepting state since once an action a1 is performed
both a2 and a3 must be performed in order to keep the systems consistent. It is important to
notice that the interpretation act a3 does not change the state of the computerised part of the
system, i.e. the IS, but only the system constituted by the IS together with the interacting
user, i.e. CC.

A model of user interaction usually contains many atomic actions that are performed in some
sequence, and probably grouped into interactive situations. The presented state model is ap-
plicable to every such atomic action since s2 in atomic action n usually becomes s0 during
atomic action n+1 – from the IS point of view. The IS is thus ready for another user action a1
(i.e. a new atomic action) as soon as it completes a2. Note that the same atomic action (at the
type level) can be part of several interactive situations and the ordering is thus dependent on
the actual interactive situation being performed.

s0
a3

a2a1

s2s1

6

,�
������	����������	�����������

The main input to interaction analysis is the action diagrams created during BPM (see exam-
ple in appendix). From the action diagrams interactive situation proposals (ISP) are derived.
The ISPs’ are then analysed at two different levels of abstraction. First, the atomic actions of
each ISP are identified and analysed according to the state model presented above and docu-
mented with interaction tables (described below). Second, possible sequence restrictions
among the different atomic actions are analysed and documented with the UML (1997) ver-
sion of Harel statecharts (Harel, 1987).

���������	�
�����

The primary notation used to model actability requirements is the interaction table (ITable),
which builds explicitly on the above presented state model of user interaction. An ITable is a
table with three rows and three columns. The leftmost column is used for the user actions, the
middle column for the state of the current interactive document(s)3, which represents the state
of the IS, and the rightmost column is used for the IS actions. Since we are not dealing with
sequence restrictions at the moment one ITable is used for each atomic action.

/ 0
��	������ 1������� $&	������

&� 1. Order form
2. Customer details

&� Associate customer to order
{By drag ‘n drop 2�1}

Order form
Order with associated customer.

1. Associate customer to
current order.

2. Transfer information
about current customer
to current order (from
customer file).

&� Acknowledge customer in-
formation:
1. Correct customer infor-

mation.
2. Incorrect customer in-

formation. (Must be
changed (� 2))

Order form
Order with associated customer
information visible.

-���	/�	�2��.��	$%����	���	��	$&	��	
�..���	�	���)��	������

Figure 3 shows the ITable for atomic action 3 within the interactive situation “Create cus-
tomer order” from the same IS as in the example action diagrams in appendix. From the ex-
ample in figure 3 we see how s0 specifies what documents are to be visible in order to per-
form atomic action 3. Cell (2,1) specifies what action the ITable is concerned with, i.e. asso-
ciating a customer to an order by the use of “drag ‘n drop” from the document “Customer
details” to the document “Order form”. Cell (2,2) specifies the state of the system after
atomic action 3 has been performed, i.e. s1, the customer is now associated to the order (from
the user’s point of view). Column 3 shows the actions that are to be performed by the IS in
response to the user’s action (in this case two consecutive IS actions). Cell (3,2) shows the

3 Interactive documents, i.e. the windows and dialogs of the GUI, are thought of as ��
���������� in the com-
munication between user and IS. One can think of them as the ����� for an interactive language game.

7

response from the IS, i.e. s2. Finally, cell (3,1) shows the interpretation act to be performed by
the user. In this case the interpretation should yield either that the customer information is
correct or that the information needs to bee updated, which leads to the performance of
atomic action 2, i.e. updating of customer information. Note that the restrictions concerning
the interpretation action a3 states that the result of the system action(s) should only be possi-
ble to interpret as one of the stated alternatives. This is admittedly a quite hard requirement
imposed on the IS designers but highly relevant to actability.

In most cases the number of IS actions that corresponds to an atomic action is one or perhaps
two in strict sequence. Sometimes it might be several IS actions involved and a need to de-
scribe how these relates to each other. In such cases statecharts are used to model the se-
quence restrictions and thereby sub-states of s1.

The granularity by which the documents are represented in ITables is dependent of how far
the analysis has proceeded. At first, the documents are referred to by textual references (as in
figure 3). When the analysis proceeds the layouts of the documents are getting more and
more explicit. This evolution can (and should) be shown in the ITables. This is done as in
figure 4, which shows the atomic action number 2 from the same IS as in figure 3.

' 0
��	������ 1������� $&	������
&� Correct invalid customer

information
Change customer information
Old information
New information
[Register change]

Update customer informa-
tion.

&� State fact:
Correct customer information
is registered.

Change customer information (ac-
knowledged)

{RT ≤ 1s}

-���	3�	$%����	!���	
������
	
�������	������

It is sometimes unnecessary to show the initial state s0 within an ITable, and hence the first
row can be omitted. E.g. when there is no doubt in which contexts the document is used, such
as in figure 4 where the “Change customer information”-document only can be shown when a
customer is already selected. Such restrictions are modelled with ��$�	�
���� ����

 as dis-
cussed in a subsequent section.

The language used within ITables is natural language such as English or Swedish. We do
however use some conventions that semi-formalise the language use. In the “user action”-
column the intended action is underlined. Underlining is also used for the documents in the
“document”-column in order to distinguish between the document and its informational (pro-
positional) content. We use square brackets to note that something should be a clickable4 item
in a document, e.g. a button with the caption “Register change” will probably be used to rep-
resent the “[Register change]” of figure 4. Further, curly brackets are used to state precondi-
tions to distinguish between actions, e.g. “{By drag ‘n drop 2�1}” in figure 3. Curly brack-

4 By “clickable item” we refer to the item used in order to cause the state change, i.e. to perform the action from

the IS point of view.

8

ets are also used to specify restrictions on IS actions such as response time (RT), e.g. “{RT ≤
1s}” in figure 4.

��������
��
������	�

Sequence restrictions among atomic actions are usually well documented in the action dia-
grams. As a matter of fact, such restrictions should be avoided as far as possible in order to
keep user interfaces flexible. Sometimes there however is a need to explicitly model sequence
restrictions in order to reach higher precision in the interaction model. For that purpose the
UML (1997) version of Harel statecharts (Harel, 1987) is used. One reason for using state-
charts is that a method design rationale for VIBA is to make use of existing notations and
formalisms that are possible to integrate with the proposed action view of information sys-
tems. Another reason for statecharts is that they, in a natural way, models the state of the in-
teractive situation which in some sense is equivalent to the state of the current documents
being used.

Even in cases where statecharts are not suitable it might still be important to document some
restrictions regarding the sequence of atomic actions. If so, one can apply information about
atomic actions that are needed and those not permitted as pre- and post-conditions to each
ITable.

��������	���
����	�

���
������	�
���

�������
�	������

As seen in the examples of figures 3 and 4 there exists a relation between the documents
“Order form” and “Change customer information”. The actions performed to navigate be-
tween documents are generally not considered to be communicative actions but ��$�	�
�����
��
���
. Such actions are directed towards how to communicate rather than communication
per se. It would be possible to model such kind of actions with ITables but the number of
ITables would increase combinatorically due to the many possible navigation paths between
documents. Because of this, a special kind of statecharts, called ��$�	�
��������

5, is used to
model navigational actions and navigational relations between documents. Each state in a
navigation chart represents a document and each transition represents a navigational action.

Within a state symbol of a statechart it is possible to associate actions that is to be performed
upon entry and/or exit of the state (Booch, 1994). We use this property of statecharts to de-
scribe IS actions that are performed automatically when a document is entered or exited. It
might for example be the case that some validation of the document content must be per-
formed by the IS before the user can switch to another document or that some initialisation is
to be performed on entrance.

During interaction analysis the navigation charts are used to model each interactive situation
in turn. The revealed information about document relations is then used during document
analysis where the whole IS is considered and the fragmented document model of interaction
analysis is consolidated to system global level.

%��	�����������
	
�������

There are primarily two kinds of requirements, with corresponding requirements specifica-
tions, that has to be taken into account when building an IS. These are usually referred to as
���
��������������

 and ��
����������������

 (e.g. Sommerville, 1996). The initial require-
ments deals with the fuzzy ideas in the beginning of IS development. Their specification is

5 An interpretation of the Swedish term “navigeringsdiagram” used by Mathiassen et al (1998).

9

thus positioned in time somewhere between CA and VIBA in SIMM terminology. The initial
requirements are important to capture since it is often based on them the contract between the
software organisation and the customer is committed. This paper deals primarily with the
��
����������������

 that are elicited and analysed during IS development and enhancement.
Our discussion about the requirements document, which we refer to as the software require-
ments specification (SRS), therefore presupposes the analyses described in earlier sections.

The specification of requirements within the SRS is often divided into functional and non-
functional requirements. Non-functional requirements can be further divided into categories
such as usability requirements, implementation requirements etc. (Sommerville, 1996). As
mentioned above, actability requirements concern both functional and non-functional re-
quirements. We therefore chose to divide actability requirements into three categories; 1)
functional requirements, 2) usability requirements and 3) other non-functional requirements.
The usability category includes requirements regarding document layouts, navigation and
interpretability. The others category includes all other non-functional requirements that re-
lates to actability. It is important to note that there exists other usability requirements that
does fall outside the scope of analytical analysis of actability (and thereby this paper) but
which are handled within other parts of VIBA. There are also other non-functional require-
ments, e.g. regarding information content, as well as functional, e.g. as the result of operating
environment constraints, which are added to the SRS at other points in time. But once again,
that is done within other VIBA-areas.

In some cases the produced models will serve as sufficient specification of requirements, but
there are good reasons for extracting requirements from the models and put them together in
dedicated sections of the SRS (one for each category). The models and specifications then
serve as background and rationale for the requirements and should also be part of the SRS.
This approach is similar to the traditional notion of the requirements document (Sommerville,
1996).

In the remainder of this section we discuss how the interaction analysis relates to the SRS,
where the requirements are to be found and how to achieve requirements traceability.

������	���
�����������

There is a direct correspondence between the IS actions found in the ITables and navigation
charts and the functional requirements of the SRS. When producing the SRS we thus have to
go through these models and check that there are requirements that covers all IS actions.
Some constraints on functional requirements can also be found as restrictions in the IS col-
umn of the Itables, but most of such restrictions have to do with usability requirements.

�
�������
�����������

Requirements regarding user interface design are found in the ITables (layout) and the navi-
gation charts (navigation). One aim of ITables is to capture requirements regarding under-
standability. The restrictions on interpretation (a3) are sources for that kind of requirements.
Another source is the stated captions on clickable items. These requirements aim at making
the IS more action transparent and intuitive, i.e. the IS should behave just as the user assume.
Other usability restrictions imposed on the IS (curly brackets in the third column) are another
source for usability requirements, e.g. response times.

�����
�	��������	���
�����������

This section of the SRS is concerned with non-functional requirements and restrictions on the
software such as required operating platforms and specific standards the system has to con-
form to. These kinds of requirements are most often found within other parts of VIBA, e.g.

10

restrictions of data representation, which ought to be found during conceptual modelling.
Since VIBA is used with a bottom up approach the actability oriented analysis often serves as
rationale for such restrictions. It is therefore important to crosscheck the different models in
order to deduce requirements from their interconnections and to avoid ambiguity and incon-
sistency.

������������
	�
�����������

Requirements traceability (RT) is important for system maintenance and evolution. RT can
be viewed from two different angles. One viewpoint is traceability from business model
through systems models to software system. We believe that such traceability is important in
order to e.g. predict software change and software change costs when re-designing or evolv-
ing a business. The other viewpoint concerns interrelationships between individual software
requirements. The second view of traceability is important to understand how changes propa-
gate through a software system. The views are not orthogonal and both should be taken into
account during RE. The first kind of RT is achieved within VIBA by use of the fact that re-
quirements are derived from the ITables which in turn are derived from action diagrams that
models the business. To make use of this fact the requirements of the SRS must contain ref-
erences to the model elements to which they relate. There are existing approaches to the other
kind of RT (at least at the implementation level), such as program slicing (Weiser, 1984) and
program dependence graphs (Podgurski & Clarke, 1990), which might be useful. This is an
area that we have just begun to explore and that remains to be studied further in order to
make explicit use of the business oriented action approach of VIBA.

3�� ������
	4���

Our approach to IS development and RE is based on what we call a language action perspec-
tive on information systems. That perspective is part of the so-called language action per-
spective on communication modelling (LAP), which has gained more and more interest dur-
ing the last years (Dignum et al, 1996; Dignum & Dietz, 1997; Goldkuhl et al, 1998). Our
approach thus tries to reconcile LAP and RE in order to make use of the best of both. In this
section our work is related to some current (and important) trends within LAP and RE.

%��	5�������	������	���
.����)�

The best known approaches within LAP are probably Action Workflow (Denning & Medina-
Mora, 1995), DEMO (Dietz, 1994) and SAMPO (Auramäki et al, 1998). In these approaches
business processes (with support of information systems) are described as communicative
action of various kinds. The Action Workflow and DEMO approaches use a predefined set of
communicative actions structured in specified way to describe business processes. The action
workflow loop is rather well known with its four predefined action stages (preparation, nego-
tiation, performance, and acceptance). The VIBA approach uses a six-stage model for busi-
ness interaction – the BAT model (Goldkuhl, 1996; Goldkuhl, 1998), that has some resem-
blances with Action Workflow. The description of business processes (in the SIMM ap-
proach) follows this six-stage model, but uses it in a much more free way than Action
Workflow and DEMO use their respective stage models. The predefined structure of actions
is not imposed on the business process descriptions (in SIMM) in the same strict way as in
these other approaches. Goldkuhl (1996) makes a comparison between Action Workflow and
SIMM describing these issues more fully and Reijswoud & Lind (1998) make a comparison
between SIMM and DEMO.

These other L/A approaches do not (according to our knowledge) go into detail of require-
ments definition. One important feature of VIBA is the bridging of the gap between 1) busi-

11

ness process modelling and 2) detailed modelling of documents and interaction within the
information system. We do not recognise this ambition in these other approaches. Their scope
thus seems to be narrower. The important notion of IS actability does not seem to be used in
these other approaches.

�����������
	�����������

Our notion of the RE process as a continuing process that span the lifecycles of possibly
many single information systems is a notion much like those proposed by recent RE work
(e.g. Sawyer et al. 1998; Lam et al, 1998) in order to cope with requirements change. We do
believe that more insight can be gained by use of e.g. business action theory (Goldkuhl, 1998)
in order to perceive the business and social impacts on RE and change management.

Our notion of interactive situations is quite similar to that of use cases (Jacobson et al, 1992).
The main difference is that we take communicative action as a starting point rather than the
behavioural view of event state systems that is used as the generic abstraction in scenario
based approaches.

We use the term “usability” to refer to a subset of actability. This is not to be mistaken for the
use of the term within e.g. usability engineering (Nielsen, 1993) where it is also used for em-
pirical testing of different (usability) metrics, such as number of accepted mistakes by a user
and the learnability of the IS. Such measurements are however important for systems devel-
opment and usability testing might be used in parallel with VIBA.

Goal driven RE (e.g. Yu & Mylopoulos, 1998) is another area that relates much to our work.
We believe that communicative action is always based on some intentions and intention can
be viewed as a kind of goal (Ågerfalk & Åhlgren, 1998). Goals are e.g. used in VIBA when
analysing the existing business. The goals of current actions and action structure can be used
to transfer tacit knowledge and good practice when designing new businesses.

6�� 7�����
���
	��
	������	!���

In this paper we have presented intermediate results of the ongoing research work of creating
a requirements engineering method, named VIBA/SIMM, based on a language action view of
information systems. We argue that information systems are not to be regarded as containers
of fact, but rather as vehicles for communication among people and organisations. The ap-
proach thus takes communicative action as the main starting point for analysis of business
and supporting information systems as integrated parts. To “perceive information systems as
action” have impacts both on how to perform the development process and on the designed
products, i.e. the information systems. One aim of our research is to build on existing RE
knowledge, modelling formalisms and good practice. Such existing knowledge and practices
are integrated in our method when possible; i.e. when they are in alignment with or can be
reinterpreted according to this new way of understanding information systems.

The specific part of VIBA that has been focused in this paper is interaction analysis and thus
IS actability. We have introduced a notion of (interactive communicative) �
���� ��
��� and
a

�
��������of user interaction used to analyse� ��
����
�$��
�
��
���
, in the context of the
business of which the planed information system is a crucial part. We have also shown how
the software requirements specification can be constructed based on the analysis in a bottom
up fashion.

The proposed approach seems to lend itself well for managing of requirements by use of a
systematic handling of requirements traceability. Change management of requirements is, as
mentioned above, an area which we plan to study further. We believe that our action ap-

12

proach and the use of business action theory (Goldkuhl, 1996) ought to be appropriate to un-
derstand such activities.

We have not yet done any comprehensive empirical testing of VIBA. What we have done so
far is the specification of a production planing system in collaboration with industry. From
that work we have learned a lot that is now incorporated in the method. Though, more em-
pirical work is still needed.

8�� �����!��
������

We would like to thank Stefan Cronholm (Linköping University) and Owen Eriksson (Da-
larna University) who has contributed extensively to the evolution of VIBA. We would also
like to mention Örebro Mekaniska Verkstad, the mechanical engineering firm that we use for
empirical testing, we really appreciate your patience.

���������

Auramäki E, Lehtinen E, Lyytinen K (1988). ��
 ����%��
%"�
�����������������	�� �����. ACM
Trans of OIS, vol 6, no 2, pages 126-152.

Austin J L (1962). &�'�
�����
���	
�'�
��'���
. Oxford University press.

Booch G (1994). (")��
%�����
��� ����#
�
� ���� ��
�	�� '�
�� � ����
���
. 2nd ed. The Benja-
min/Cummings Publishing Company, Inc. Redwood City, California.

McConnel S (1996). �� ���*�$��� ���
�+������	�,����-��
'����-�������
. Microsoft Press.

Denning P J, Medina-Mora R (1995). ��� ��
��	�
������
. Interfaces.

Dietz J (1994). .�
���

���������	�����"�
���

�����
�	�. In Proc. 27th Annual Hawaii Intl. Confer-
ence on Systems Science, IEEE.

Dignum F, Dietz J (1997). ���������
������������	�%�
���/��	��	����
�������
 ��
�$�. Proc. 2nd

International workshop on Communication modelling, Computer science Reports, Eindhoven Univer-
sity of Tecnology.

Dignum F, Dietz J, Verharen E, Weigand H (1996). ���������
������������	�+�
���/��	��	����%

�������
 ��
�$�. Proc. 1st International workshop on Communication modelling, Electronic Work-
shops in Computing, Springer Verlag.

Dubois E, Pohl K, Opdahl A L (1998). ������0WK�1�
���,��!
�� ��������������

���	�������	2�3���%
��
���
����-��
'����4����
#. Presses universitaires de Namur, Belgium.

Gamma E, Helm R, Johnson R, Vlissides J (1995). *�
�	�� �

���
2�������

� ��� ���
�"��� �")��
%
�����
���
��
'���. Addison-Wesley Publishing Company Inc.

Giddens A (1984). ���� ���

�
�
�������
����
#��(�
����� ���
���
����#� ���

���
���
���. Polity Press,
Cambridge.

Goldkuhl G, Lind M, Seigerroth U (1998). ���������� 1�
���,��!
�� ����
���/��	��	����
�������%

 ��
�$��������������
����5�������	. Jönköping Intl. Business School.

Goldkuhl G, Lyytinen K (1982). �����	��	����
����$��'�����������
����
#

��
. In Ginzberg, Ross
(Eds.) Proc. 3rd Intl. Conference on informations systems, Ann Arbor.

Goldkuhl G, Röstlinger A (1993). 6���
������
�
������� ��"���
2������ ��
��
��
 ��
��������	������#%

�
. In Avison D et al (1993): Proc. Human, organizational and social dimensions of Information sys-
tems development, North-Holland/IFIP w.g. 8.2.

Goldkuhl G, Ågerfalk P J (1998). ��
����,�
���� 1������
���� -#

��
2� (�
����� ��� �� ����������

��	�������	�5�
���. In Dubois et al (1998).

13

Goldkuhl G (1996). 7�������"�
���

������'��!
�������
������������	. In Dignum et al (1996).

Goldkuhl G (1998). ����-�8����
�
����.�
���

������

�
�+�.�
���

����������
��������
����8%
����	�����9����. Presented at Beyond Convergence: The 12th Biennial ITS Conference (ITS’98) in
Stockholm. Jönköping Intl. Business School.

Jacobson I, Cristerson M, Jonsson P, Övergaard G (1992). (")��
%�����
���
��
'������	�������	�+���
�
����
�����$���� �����. ACM-press.

Harel D (1987). -
�
�����

2���9�
����3������
��������� ��8�-#

��
. In Science of Computer Pro-
gramming 8 (1987) pages 231-274.

Lam W, Shankararaman V, Jones S (1998). 5���	��	�����������

�����	�2���
�
����7��������%

���
. In Dubois et al (1998).

Lam W (1998). ����	������#
�
�����5���	����
���������
�%(����
���-��
'����*�$��� ���
�-�
%

��	. In Pernici B, Thanos C. Proc. 10th Intl. Conference on Advanced Information Systems Engi-
neering (CaiSE’98), pages 219-236. Springer-Verlag, Berlin, Heidelberg, 1998.

Maiden N A M, Cisse M, Manuel D (1998). ���,-�9�����
���� 3����
2� ��

���
� ���� 9�����
��	
-#

��
�����������

. In Dubois et al (1998).

Mathiassen L, Munk-Madsen A, Nielsen P A, Stage J (1998). (")�!
�����
���������#
�������
�	�. (In
Swedish, Object-oriented analysis and design). Studentlitteratur, Lund.

Nielsen J (1993). :
�"���
#���	�������	. Academic press.

Podgurski A, Clarke L (1990). �� ������� ������ ��� ��	���� �� ��������
� ���� �

� �� ����
���
� ���

��
'����
�

��	;� ��"�		��	� ��������
������. IEEE Transactions on Software Engineering, 16(9),
pages 965-979.

Reijswoud V E van, Lind M (1998). ��� ����	�
'��"�
���

���������	�� ������
����
������	��	�
��
���� ��
 ��
�$�. In Goldkuhl et al (1998).

Sawyer P, Sommerville I, Viller S (1998). 1� ��$��	�
��� ����������

� �����

. In Dubois et al
(1998).

Searle J R (1969). - �������

������

�#����
��� ����
� �#�������	��	�. Cambridge University Press,
London.

Sommerville I (1996). -��
'������	�������	. 5th ed. Addison-Wesley Publishing Company Inc.

UML (1997). :5/�<�
�
����7�����$�=�=. Rational Software, Inc.

Weiser, M (1984). ���	����
�����	. IEEE Transactions on Software Engineering, 10(4), pages 352-
357.

Winograd T, Flores F (1986). :����

�����	���� �
��
�������	��
���2�����'�������
����������
�	�.
Ablex, Norwood.

Yu E, Mylopoulos J (1998). ,�#�7���%(����
�������������

���	�������	. In Dubois et al (1998).

Ågerfalk P J, Åhlgren K (1999). 5�������	�
�����
����������5�
���
. In Proc. 1999 IRMA Intl. Con-
ference: Managing Information Technology Resources in Organizations in the Next Millennium. Idea
Group Publishing, Hershey, PA, USA.

&����
 �7%$9:	1$����, �..��
�2	�
ACRE’98
7������ 1��� *��
��� ����	��
�
Ågerfalk, Goldkuhl 24.09.98 2 B1
7������
" Order phase 1

Customer Registration [Customer <-> Salesman <-> System]

Verification of customer information [Customer <-> Salesman <-> System]

Investigating travel possibilities [Customer]

Customer identification [Customer -> Salesman <-> System]

Cancel order [Salesman <-> System]

Identification of product [Customer <-> Salesman <-> System]

Seat booking [Customer <-> Salesman <-> System]

Travel brochure

Intention to buy
Customer

information
[System]

OR

Customer
information on
current order

document

Customer
information
[System]Information

about offered
products and

capacity
[System]

Old customer New customer

OR

Order form with
identified

customer and
product

Order form with
booked seat

OR Offer refused

END

B2

&����
 �7%$9:	1$����, �..��
�2	�
ACRE’98
7������ 1��� *��
��� ����	��
�
Ågerfalk, Goldkuhl 24.09.98 2 B2
7������
" Order phase 1

Order acceptance [Customer -> Salesman <-> System]

Order confirmation [System]

Abort order processing [Salesman <-> System]

Price agreement [Customer <-> Salesman <-> System]

Additional booking [Customer <-> Salesman <-> System]

Abort order processing [Salesman <-> System]

[Customer]

Invoice Ticket

Preparation of travel documents [Salesman <-> System]

[Customer]
[Supplier]

Confirmed
customer order Confirmed

supplier order

Order log

OR
Offer refused

Final order
proposal

Additional
products
[System]

Order form with
additional
products

Order form with
booked seat

B1

OR Offer refused

END

END

B3 B4

