
The Missing Approach for Component Specification

Benneth Christiansson and Marie-Therese Christiansson
Information Technology Department

Karlstad University
Sweden

Benneth.Christiansson@kau.se

Marie-Therese.Christiansson@kau.se

Abstract:
For component-based software development to be successful in organizations, the software developers
must give close attention to the design of components as independent abstractions with well-specified
behaviors. Without well-specified behaviors the possibility to distribute and acquire software components
will be limited. We have studied 20 approaches to software component specification focusing on problem
area, formality, usage of specification and identification of requirements. We show that the main focus in
the software engineering community is towards the ‘datalogical’ side of software component specification.
The major part of research concerning software component specifications is aimed at finding solutions
regarding assembly and composition. The approaches are also oftentimes formal in their modelling
approach. We argue for the need of an informal approach to capture requirements and enable acquisition
of existing component. This approach needs to be based on business practice and people who are best
suited to model requirements.

Introduction
Software systems form an essential part of most organizations business infrastructure,
and becomes increasingly complex. In today’s global market, these organizations have to
continuously adjust and improve their business practices to maintain a competitive edge.
This conveys that the demands and requirements on the organizations software systems
change at the same rate. This is a big challenge for the software development community,
and has been a big issue in the software engineering field for at least two decades. The
challenge is to increase the productivity of software system development and to augment
the flexibility of software systems to react to business process changes. One approach to
achieve this is taking clues from traditional production techniques. Software systems
should be constructed from prefabricated, easily identifiable software components
(Szyperski, 2002, Christiansson, 2001) that can be widely used. To develop software
systems with a component-based approach is one of the newer trends within the software
development community. However for component-based software development to be
successful in organizations, the software developers must give close attention to the
design of components as independent abstractions with well-specified behaviors. Without
well-specified behaviors the possibility to distribute and acquire software components
will be limited.

Langefors (1995, p. 142) describes the development of software systems as finding the
solutions to: ”Two fundamental problems with information systems were pinpointed at
the outset: (1) The "infological” problem of how to define the information to be made

available to the information system user, and how to design data that may represent the
information to the user; and (2) The ”datalogical” problem of how to organize the set of
data and the hardware so as to implement the information system.”. We take our point of
departure in this description. We believe that emphasis during software development
needs to be on both these problem areas also regarding component-based software
development or even more so regarding component-based development. We believe this
is accurate due to two facts firstly software component development is about assembly
not about construction. This means that we do not have to focus on how the actual
development is done; the software component is an existing artifact. Secondly software
component development is about acquisition, we need to be able to identify which
components we need when assembling systems; this conveys the need for a specification
of the components behavior (Szyperski, 2002, Christiansson, 2000, Heineman & Council,
2001). This acquisition we believe needs to be based on an ‘infological’ specification as
well as a “datalogical” one, using Langefors (1995) terms. In this paper we describe the
need for a new approach to specify software components; we also show that the major
part of research in this area is aimed at finding the solution to the ‘datalogical’ problem.
In the few approaches focusing on the ‘infological’ problem the strategy is based on
creating formal specifications. We argue for the need of an informal approach for
addressing the ‘infological’ problem of software development.

The software component
The term software component isn’t easy to define, it does not have a clear-cut definition
in the software development community, but the meaning fluctuates. Atkinson et. al
(2002, p. 67) expresses this as: ”Although components have been in vogue for some time,
there is still no general consensus about precisely what constitutes a component and
exactly how they should be put together to build useful systems.” This paper does not
focus on the issue of defining the term software component. Instead we support the
definition that Christiansson (2001, pp. 235-236) makes:

“A software component:

• is independent and reusable;
• provides a defined functionality using a specific interface;
• can affect/be affected by other software components;
• should have a specification (in which the software component is described on a

high level of abstraction);
• can have multiple implementations, meaning that the same component can be

implemented in several programming languages; and
• can have several executable (binary) forms, i.e. the same component can be

executed in different operating systems.”

The fact that a component is independent and reusable shows that a component can be
used without other components present, the services provided by the component should
be accessible without any external help except from the software glue and necessary run-
time environment. A component can affect and be affected by other software
components. This means that two components can ‘work together’ and ‘as a whole’

create a greater service than used separately. In figure 1 we illustrate a software
component with a context.

Figure 1. A software component with a context (Christiansson, 2001, p. 236)

The need for a documented specification for a software component is obvious if one
consider the process of acquiring a component. How can one find a software component
if one doesn’t have something to look for? This is a factor that can decrease the gap
between the ‘infological’ and ‘datalogical’ issues when developing a software system. If
there are documented specifications in the ‘infological’ area, these can be described in
such ways that they are useful when dealing with the capturing of requirements and
acquisition of components to be used in software systems. The component as such is
directly usable in the ‘datalogical’ sense as an implementation and/or binary form
(Christiansson, 2000).

Our approach to software component specification
We have chosen to describe our research effort as: “The meeting between business
processes and software components – in a well founded specification.” Our approach is
focused mainly towards capturing requirements on components, and creating a
specification that can be used for acquisition, approaches towards assembly do already
exist. Our approach for specifying software components is based on the integration of
results from two research fields; 1) Component Based Software Engineering and 2)
Business Process Modelling. As Langefors (1973, p. 53) so elegantly put it: ”Experience
shows that different groups in organizations tend to neglect the importance or the
difficulty of the other peoples ’field’”. Our approach integrates business process models,
the capturing of software requirements in an informal manner and software component
specifications into one type of document. We believe it is possible to short-circuit the
traditional software development process when using software components. This is due to
two facts 1) it is not a pragmatically based assumption that the approach to formally
break down requirements into more and more detailed software specifications is
successful in the real world; and 2) software components are already constructed, so the
problem of software development is solved, however we still have the problem of
acquisition and assembly of the existing components. Acquisition and assembly is based
on the knowledge of what is needed to acquire and assemble and also on what is possible
to acquire. Vigder et al. (1996, p. 13) claims that ”… in order to realize the benefits of
COTS software a procurement process must be in place that defines requirements
according to what is available in the marketplace, and that is flexible enough to accept

COTS solutions when they are proposed.”. What is needed is an approach to specify
requirements on software components to identify actual needs. To be able to capture
requirements based on the desired business processes expressed by people who run and
perform business practise. We believe this should be done close to the business practise
to cope with the problem of missing and/or inaccurate requirements as well as constant
business change, se figure 2. Beck (2000, p. 3) illustrates this as “Business
misunderstood – the software is put into production, but it doesn’t solve the business
problem that was originally posed. Business changes – the software is put into
production, but the business problem it was designed to solve was replaced six months
ago by another, more pressing, business problem.”

Figure 2. Our approach to well founded component specifications.

Our approach is based on the following assumptions and demarcations:

1) Our approach is applicable after the performance of a business change analysis
that resulted in the need for software systems development.

2) Our approach is based on a component-based strategy for software systems

development.

3) A useful (pragmatically) business model is small and flexible. To appeal to the
software engineering community as well as the potential procurer of software
systems the models that capture requirements should be easy to understand and

result in the absolute minimal extent required to capture requirements. We suggest
an approach similar to what Beck (2000) call extreme programming. He states
“Business often doesn’t like Development. Relations between people who need
systems and the people who build systems is so strained, they often resemble the
relations between centuries-old enemies” (Beck, 2000, pp. 86-87). This indicates
the need of a minimal, understandable and useful method for capturing,
documenting and communicating requirements. We call this an extreme
modelling strategy (Christiansson & Christiansson, 2003).

4) We believe that people are best suited to model requirements and therefore the

models should be adapted to human needs. We need to delimit the information
amount to its bare essentials and describe this information on such a high level of
abstraction that for instance atomization isn’t needed. The amount of information
should be easily overviewed, browsed and understood by people, both systems
engineers and clients, without the rendering of ‘information overload’. We regard
formal models as important when creating models for software development, but
not when describing requirements for acquisition of existing software
components. We argue for a human-based capturing of requirements and a
manually performed acquisition.

5) We believe a business process based approach for capturing software

requirements in the form of component specifications is useful.

6) A usable strategy for capturing requirements is based on the language used in the

business practise.

7) We regard component-based systems development as being closer to the field of

ERP-systems acquisition than traditional tailoring of Software systems. Szyperski
(2002) presents component-based development as a middle path somewhere
between traditional ‘tailoring’ of software and the acquisition of ERP-packages.
The case isn’t development any more but acquisition and assembly of already
existing software in the shape of components.

8) Our approach is only focused towards capturing requirements and using them for

acquisition of COTS (Components Off The Shelf) software components. The
captured requirements can of course be used as a basis for traditional software
development but this is not our intent with the approach.

9) We use Langefors (1995) idea about two major problem areas ‘infological’ and

‘datalogical’ and consequently with our demarcations choose to focus on the
‘infological’ problem area. Assuming the actual components already exist
indicates that capturing ’infological’ requirements is sufficient to acquire
components.

10) By integration we mean the merging of business process models and software

component specifications. We also mean that these models are linked to other

necessary documents both regarding business process models, the multifaceted
nature of business processes calls for pluralistic and multidisciplinary modelling
approaches (Melão & Pidd, 2000), as well as more detailed software
specifications focusing on for instance assembly of components.

Positioning of existing approaches
We have performed an extensive literature study and studied 20 different approaches
towards software component specification. We realize that we haven’t studied ‘all’
existing approaches but still believe we have found a sufficient amount to be able to state
that our approach is a novel one. We have chosen four dimensions to focus on in this
study. These dimensions are based on our description of a useful approach to component
specification and the capturing of software requirements, se preceding section.

The first dimension is what problem area, according to Langefors (1995) division of the
software development activities as the solutions of the ‘infological’ and ‘datalogical’
problems, the approach is focused on.

The next dimension is the degree of formality in the required documentation. Here we see
a scope from informal natural language descriptions using the business practitioner’s
language to very formal definitions of each of the constructed software’s attributes and
behaviors. In this perspective atomization is often addressed. To automate the allocation
of components we need to have a very high level of formalism regarding the
specifications we use. This leads to a lot of information specified in graphical or textual
models. Another approach we believe could be to delimit the information amount to its
bare essentials and describe this information on such a high level of abstraction that
atomization isn’t needed.

The third dimension is the expected usage of the specification, what the specification is
aimed towards. We have noticed that the larger amounts of approaches are aimed towards
assembling or composition of component-based software systems. These approaches
indicate that the components already exist within reach of the software engineers. But we
argue for specification approaches that support the actual acquisition of components
regarding identification and evaluation as well as assembling existing ones. So we
identify the third dimension as expected usage mainly acquisition and/or assembly.

The fourth dimension is regarding identification of requirements. By this we mean any
kind of methodological support for identifying the actual requirements. We have noticed
that the specification approaches described in literature is based on the notion that the
requirements already are defined and described somehow; we call this a descriptive
focus. By descriptive we mean that the specification approach only supports the
description of known requirements. We believe that another way of doing this is enabling
and supporting both the actual description of requirements but also in identifying them.
We call this an explorative approach, where explorative indicates the support for
exploration and identification of requirements as well as describing them.

The following section gives a brief summation of each identified approach and a
positioning within our described dimensions, we end this section with a table containing
the whole classification, see table 1.

1. Business Objects.
Sims (1994) presented his idea regarding business objects, where a business object is a
component supporting an activity in the business practice. Business objects are,
according to object-orientation, large objects that supports one or more clear business
functions. This approach is focused towards ‘datalogical’ issues and focuses mainly on
assembly. It is formal in the way business objects are documented and descriptive
regarding capturing of requirements.

2. Melding Structured Abstracts and the World Wide Web for Retrieval of
Reusable Components.
The intention of this approach is to according to Poulin & Werkman (1995): “enable a
way to quickly assess the important aspects of a piece of software so programmers can
decide whether or not to reuse it.” (p. 1). The approach has a structured informal
approach of representing a software component specification using “…an orderly,
concise, natural-language narrative.” (p. 6). Furthermore we classify the approach as
descriptive in the sense that all requirements for acquisition is known beforehand, it is
directed towards the ‘datalogical’ problem area .

3. Retrieving software Components That Minimize Adaptation Effort.
Jilani et. Al (1997) describes an approach for software component retrieval from a
software repository. “Given a software library whose components are represented by
formal specifications, we distinguish between two types of retrieval procedures: exact
retrieval, whereby, given a query K, we identify all (and only) the library components
that are correct with respect to K; approximate retrieval which is invoked in case exact
retrieval fails, and which (ideally) identifies the library components that minimize the
required adaptation effort…” (p. 1). We distinguish this approach as a formal,
descriptive and ‘datalogical’ approach with focus on acquisition and assembly of existing
components.

4. The Magma approach to CBSE.
Hallsteinsen & Skylstad (1999) describes an approach for component-based software
engineering and is based on experiences from the Norwegian software development
industry. The approach is based on practice and is being distributed through a software
engineering Handbook. The approach uses Object-Oriented modeling with UML. This
means that the approach has a main focus towards ‘datalogical’ issues and uses a formal
strategy for specifications. The approach has an explorative focus regarding identifying
software requirements. The main focus is towards development and assembly of
applications and components.

5. Characterizing a Software Component.
Yacoub et. Al (1999) focuses on component characterization they “proposes a set of
features to characterize a software component.” They define a component

characterization as existing on three levels 1) Informal description with “human-related
issues” 2) Externals which means its interactions with other application artifacts and with
the platform and 3) Internals which reflects its internal aspects. This is an approach that
we classify as addressing both ‘infological’ and ‘datalogical’ issues. The approach
identifies the need for informal descriptions and has an acquisition /assembly perspective.
The strategy is descriptive and gives no hints on how to identify the needed parts of the
specification.

6. The Catalysis Approach.
D’souza & Wills (1999) describes an approach to develop component-based software
systems. The approach contains a specification strategy which the authors describe as “A
system requirement spec often reflects the business model closely” (p. 17) This quotation
indicates a informal and ‘infological’ approach to component specification but they also
state that “Gathering all the specs for the actions the system is required to take part in
and the static models needed to draw snapshots for those specs, we compile a formal
functional requirements model.” (p. 17). We classify this approach as mainly dealing
with the ‘datalogical’ problem area, it has an explorative focus for capturing
requirements. The approach is formal and focus is on development and assembly.

7. An Approach to Software Component Specification.
Han (1999) describes their approach as “… component specification aims to provide a
basis for development, management and use of components.” (p. 2). The approach is
claimed to handle the syntactic issues concerning the exact interface of a component
implementation and also to include the semantics of the interface elements, their
relationships, the assumed user contexts and the quality attributes. In what way all of this
is captured in the suggested specification is however not clear. We understand this
approach as being a formal one dealing with assembling components on the ‘datalogical’
level. The approach has a descriptive focus dealing wit already known requirements.

8. Enhancing Component Reuse Using Search Techniques.
Zhang (2000) has narrowed the specification issue down to be applied in a specific type
of component repository. This repository exists in a so-called metaCASE environment.
Zhang (2000, p. 1) states the purpose of this approach as enabling acquisition “To reuse
and integrate a component in the metaCASE environment, users must be able to locate
and understand them.” The approach is based on the use of a CASE tool where the actual
components and their specification are stored. This indicates the specification strategy to
be formal, with both syntactic and semantic rules for the specification schemes. The
approach has a descriptive aim where all requirements are known and focuses on the
‘datalogical’ problem area.

9. Declarative Descriptions of Component Models as a Generic Support for
Software Composition.
Presso (2000) describes a concept called component models which “…define standards
for describing components and mechanisms to build applications out of components.
These standards are specified using natural language and embedded into composition
tools…We propose the use of logic meta-programming to describe the components,

describe the protocols for composition and the code that realizes them, specify an
application built from connected components and generate the code for the application. ”
(p. 1). This quotation illustrates the ‘datalogical’ focus as well as a formal approach
towards specifications. The approach also incorporates a descriptive outlook regarding
requirements and aims towards assembly of component rather than acquisition.

10. Using UML Software Engineering With Objects and Components.
Stevens & Pooley (2000) describes an approach to software component specification
using UML diagrams to model components. They state that “A component must be
properly documented with specification…. Components by definition realize interfaces
and have context dependencies; both aspects should obviously be documented.” (p. 217).
The approach is formal an focused towards solving the ‘datalogical’ problem area. The
approach is descriptive regarding requirements capturing and focus on assembly of
existing components.

11. A Grey-Box approach to Component Composition.
Bruin (2000) describes an approach based on trying to solve the problems with
incomplete component contracts and undocumented dependencies between components.
The approach is based on a “scenario-based technique called Use-Case-Maps (UCM),
which uses scenarios to describe how several components operate at a high abstraction
level” (p. 195). We classify this approach as formal and dealing with assembly of
existing components. It is focusing towards ‘datalogical’ issues and is descriptive
regarding requirements.

12. Business Modeling with UML.
Eriksson & Penker (2000) states that a specification is a model element, they use the
UML notion of interface to document specifications. “The interface is a specification of a
collection of operations that can be implemented by one or more classes.” (p. 27). The
approach is based on UML and uses the ‘use case’ diagrams to model the ‘infological’
issues. We classify this approach as descriptive regarding capturing of requirements. The
approach handles informal issues in models, the approach does not focus on acquisition
of existing components.

13. UML Components A Simple Process for Specifying Component-Based Software.
Cheesman & Daniels (2001, p. 24) defines a component specification as “…defines what
is to be built and what units will exist at runtime. The component specification defines the
set of interfaces supported and any constraints on how they are to be implemented.”. The
approach is based on using UML-notation and has a both ‘infological’ and ‘datalogical’
approach. The approach is descriptive in the sense that the authors delimit themselves
from identifying requirements “This isn’t a book about requirements gathering” (p. 67).
The focus is on development of new components and to some extent on the assembly of
components. The approach has a both formal and informal perspective and for instance
argues the usage of ‘system envisioning’ using techniques such as storyboarding.

14. A Formal Approach to Software Component Specification.

According to Lau & Ornaghi (2001) the purpose of this approach is to allow formal
reasoning about components. The reasoning is to be done regarding the components
construction and composition as well as their correctness. They define a component
specification as a specification of its interface. “The specification of a component is
therefore the specification of its interface, which must consist of a precise definition of
the component’s operations and context dependencies, and nothing else.” (p. 1). We
classify this approach as a formal, descriptive approach towards the assembly of already
known components.

15. A Goal-driven Appoach to Enterprise Component Identification and
Specification.
This approach is described by Levi & Arsanjani (2002) and has a web service focus.
They have developed a systematic method of component identification and boundary
definition. The approach is based on the usage of UML notation. And the approach uses
a straightforward decompositional strategy for breaking down the requirements according
to the possibilities within UML. We classify this approach as a formal approach using
UML with main focus on assembling software components with a ‘datalogical’ focus.
They use an explorative approach regarding the identification of requirements but do not
document them in any informal way.

16. Software Component Specification Using Role-Based Modeling Language.
Kim et. Al. (2002) have developed an approach for component specification with a Role-
Based Modeling approach. A role model is defined as “…a structure of roles, where a
role defines properties that determine a family of UML model elements (e.g., class and
generalization constructs.” (p. 2). Further they claim that a component specification is a
package of ‘role models’ expressed using the Role Based Modeling Language. This is a
formal approach to support assembly of software components with a ‘datalogical’ focus.
The approach is based on a descriptive notion where the requirements are known
beforehand.

17. Software Component Specification Using Design by Contract.
Liu & Cunningham (2002) presents an approach to software component specification
with the intent to “…give close attention to the design of components as independent
abstractions with well-specified behaviors.” (p. 1). The focus is to understand precisely
what a component does, based on the specification of the operations in its interfaces. We
regard this approach as a formal, descriptive approach directed mainly towards
assembling existing components.

18. Components retrieval systems.
Khayati & Giraudin (2002) presents an approach for retrieving software components
already existing in a repository. This implies that focus is on acquisition and assembly of
existing components. They state that “The main problem encountered when reusing the
components libraries is component retrieval i.e. finding in the library the components
that can be used in the construction of a specific information system.” (p. 1). We classify
this approach as a semi-formal strategy due to the fact that they on one hand states that
“using external information provided as human description of the components.” (p. 4).

This statement indicates an informal approach towards specification but they also state
that the engineer should be able to “…formally specify their needs.” (p. 5). They assume
that the components already are specified i.e. the requirements are known. We believe the
approach to be mainly focused on specifications in the ‘infological’ problem domain.

19. The KobrA Approach.
Atkinson et al (2002) describes a method for component-based software engineering
based on a product-line perspective. Product-line indicates that all software components
can be related to a family of software products within the organization. These families are
described as frameworks. These frameworks are generic and reusable. They define a
concept called Komponent (KobrA component), each Komponent in a framework is then
described by a suite of UML diagrams as if it where an independent system in its own
right. This approach is formal using UML and focuses on implementation of software.
The focus is towards development of components and applications and the approach
assumes requirements to be known beforehand.

20. Modelling with UML Component-based and Aspect Oriented Programming
Systems.
Clemente et al (2002). The approach is based on using UML diagrams to specify
important aspects of software components. According to the authors: “Interfaces
specification, component specification, components implementation, package and
assembly and deployment” (p. 2) are important aspects that needs modelling. A
component specification is a specification of its interfaces through a certain concept in
UML. We classify this approach as a formal approach with a focus on ‘datalogical’
issues. The strategy does not give any help of how to identify requirements and has an
emphasis on assembly of existing components, implying acquisition is already done.

Table 1. The classification of existing software components specification approaches

 Problem-solving area Degree of formality Usage of specification Support for capt. Req.
Approach# ‘infological’ ‘datalogical’ Informal Formal Acquisition Assembly Descriptive Explorative

1 X X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X X X X
6 X X X X
7 X X X X
8 X X X X
9 X X X X

10 X X X X
11 X X X X
12 X X X X
13 X X X X X X
14 X X X X
15 X X X X

16 X X X X
17 X X X X
18 X X X X X
19 X X X X
20 X X X X

Conclusions
We have in this paper focused on what we believe is a missing approach to specify
software components. We believe that emphasis during software development needs to be
on both solving the ‘infological’ and ‘datalogical’ problems (Langefors, 1995). We have
shown through our study of 20 existing approaches to software component specifications
that the main focus in the software engineering community is towards the ‘datalogical’
side. We claim that focus should be towards the ‘infological’ problems, we do not mean
that the ‘datalogical’ problems are irrelevant, but component-based development gives
the possibility to regard the software as already constructed. We believe this is accurate
due to two facts 1) software component development is about assembly not about
construction. This means that we do not have to focus on how the actual development is
done; the software component is an existing artifact. 2) Software component development
is about acquisition, we need to be able to identify which components we need when
assembling systems; this conveys the need for a specification of the components behavior
in the ‘infological’ sense. To create this ‘infological’ specification we have turned
towards the business process modeling community and suggest an approach that
integrates business process models, the capturing of software requirements and creation
of software component specifications into one type of document.

We claim that people are best suited to model requirements and therefore the models
should be adapted to human needs. We need to delimit the information amount to its bare
essentials and describe this information on such a high level of abstraction that for
instance atomization isn’t needed. The amount of information should be easily browsed
and understood by a human, both systems engineer and the client, without the rendering
of ‘information overload’. We believe our claim is even stronger, regarding component-
based development vis-à-vis traditional development, due to the fact that we are not
dealing with development of software but mere the acquisition and assembling of existing
software. Formal models are important, but not when describing requirements for
acquisition of software components. We argue for an informal human-based capturing of
requirements and a manually performed acquisition, we have in our positioning of
existing component specification approaches showed that emphasis is towards formal
models. This is maybe due to the fact that the major part of the studied approaches is
focused towards assembly of components on the ‘datalogical’ level. We believe that we
need an approach focused towards acquisition; we need to acquire components before we
can assemble them into software systems. We also show that the larger share of studied
approaches have a descriptive view regarding the capturing of requirements. With
descriptive we mean that they only show how to describe existing known requirements,
they do not aid the process of exploring requirements. Our approach has emphasis on the
capturing of requirements.

Referenses
Atkinson C., Bayer J., Bunse C. & Kamsties O. (2002) Component-based Product Line
Engineering with UML Addison Wesley Longman, Inc., California, Menlo Park, USA

Beck K. (2000) Extreme Programming Explained. Addison Wesley Longman, Inc.,
California, Menlo Park, USA

Christiansson, B. (2000) Komponentbasera informationssystem - Vad säger teori och
praktik?, Linköpings Universitet (in swedish)

Christiansson, B. (2001) ”Component-Based Systems development” In: Nilsson A.G. &
Pettersson, J.S. (eds.).On Methods for Systems Development in Professional
Organisations, Studenlitteratur, Lund.

Christiansson M-T. & Christiansson B. (2003) Extreme Modelling – Less is More.
(submitted paper)

Clemente P. J., Sanchez F. & Perez M. A. (2002) Modelling with UML Component-
based and Aspect Oriented Programming Systems. Proc. 7:th Int. Workshop on
Component-Oriented Programming.

de Bruin H. (2000) A Grey-Box Approach to Component Composition. First int. symp,
Generative and Component-Based Software Engineering, Springer-Verlag, Berlin

D’souza D. & Wills A. C. (1999) Objects, Components, and Frameworks with UML The
Catalysis Approach. Addison Wesley Longman, Inc., California, Menlo Park, USA

Eriksson H-E. & Penker M. (2000) Business Modeling with UML, John Wiley & Sons,
Inc., USA

Hallsteinsen S. & Skylstad G. (1999) The Magma approach to CBSE. Proc. Int.
Workshop on Component-Based Software Engineering ICSE99 Los Angeles, CA, USA

Heineman G. T. & Councill W. T. (2001) Component-Based Software Engineering
Putting the Pieces Together. Addison Wesley Longman, Inc., California, Menlo Park,
USA

Khayati O. & Giraudin J-P. (2002) Components retrieval systems. Reuse in Object-
Oriented Information Systems Design, OOIS workshop Montpellier 2002.

Kim D. K., Ghosh S. France R. B. & Song E. Software Component Specification Using
Role-Based Modeling Language", 11th OOPSLA Workshop on Behavioral Semantics:
Serving the Customer, November 4, 2002.
Langefors B. (1973) Theoretical Analysis of Information Systems, 4:th ed.,
Studentlitteratur, Lund.

Langefors B. (1995) Essays on Infology – Summing up and Planning for the Future.
Studentlitteratur, Lund.

Lau K. K. & Ornaghi M. (2001) A Formal Approach to Software Component
Specification. Proc. Specification and Verification of Component-Based Systems
Workshop at OOPSLA 2001, Tampa Bay, Florida

Levi K. & Arsanjani A. (2002) A Goal-driven Approach to Enterprise Component
Identification and Specification. Commuication of the ACM. October/Vol. 45, No. 10,
pp. 45-52.

Liu Y. & Cunningham H. C. (2002) Software component specification using design by
contract. Proceedings of the SoutEast Software Engineering Conference, Tennessee
Valley Chapter, National Defense Industry Association, Huntsville, AL, April 2002

Melão, N. Pidd, M. (2000) A conceptual framework for understanding business processes
and business modeling, Information Systems Journal, Vol. 10, pp.105-129.

Poulin J. S. & Werkman K. J. (1995) Melding Structured Abstracts and World Wide Web
for Retrieval of Reusable Components. M. H. Samadzadeh M. H. & Zand M. K. (Eds.):
Proceedings of the ACM SIGSOFT Symposium on Software Reusability (SSR'95), April
23-30, 1995, Seattle, WA, USA pp. 160-168

Presso M. J. (2000) Declarative Descriptions of Component Models as a Generic
Support for Software Composition. Proc. 5:th Int. Workshop on Component-Oriented
Programming, Blekinge Institute of Technology.

Sims O. (1994) Business Objects, Addison Wesley Longman Inc., California, Menlo
Park, USA.

Stevens P. & Pooley R. (2000) Using UML Software Engineering with Objects and
Components. Addison Wesley Longman, Inc., California, Menlo Park, USA

Szyperski C. (2002) Component Software Beyond Object-Oriented Programming.
Addison Wesley Longman, Inc., California, Menlo Park, USA

Vigder M. R, Gentleman W. M. & Dean J. (1996). COTS Software Integration: State of
the art. National Research Council of Canada., Toronto, Canada.

Yacoub S., Ammar H. & Mili A. (1999) Characterizing a Software Component. Proc. Int.
Workshop on Component-Based Software Engineering ICSE99 Los Angeles, CA, USA

Zhang (2000) Enhancing Component Reuse Using Search Techniques. Proc. IRIS 23,
Laboratorium for Interaction Technology, University of Trollhättan Uddevalla.

